بحث عن خصائص الاعداد الحقيقيه

بحث عن خصائص الاعداد الحقيقيه ، خصائص الاعداد الحقيقية بحث مِن الممكن تعريف الأعداد أو الأرقام على أنها مجموعة الرموز التي يتم إستخدامها للتعبير عن الأرقام التي تقع بين الصفر و التسعة و بهذا فإنها لا تُعتبر أعداد و إنما تعتبر أشكال للتعبير عن مقدار و كمية الأشياء… بحث عن خصائص الاعداد الحقيقيه.

تعرف على:

بحث عن علماء الرياضيات جاهز للطباعة

مقدمة بحث عن خصائص الاعداد الحقيقيه

مقدمة بحث عن خصائص الاعداد الحقيقيه
مقدمة بحث عن خصائص الاعداد الحقيقيه

في بداية بحث عن خصائص الاعداد الحقيقيه يجب العلم أن الأعداد الحقيقية عبارة عن مجموعة الأعداد النسبية و الأعداد الغير نسبية متحدين معاً بصورة غير نهائية ، و مِن الجدير بالذكر أن الخطوط الخاصة بالأعداد الحقيقية هي خطوط أفقية تحتوي على أعداد موجبة و أخرى سالبة إضافة إلى العدد صفر ، و مِن أهم ما تتسم به الأعداد الحقيقية هي أنها غير نهائية لا في الناحية الوجب و لا الناحية السالبة.

قد يهمك:

بحث عن العالم فيثاغورس .. بحث عن عالم الرياضيات فيثاغورس

نظرة عامة حول الأعداد الحقيقية

قبل التطرق لأياً مِن محتويات بحث عن خصائص الاعداد الحقيقيه  فإنه و بدايةً يجب العلم أنه مِن الممكن تعريف الأعداد الحقيقية بأنها كافة الأعداد التي تقع على خط الأعداد و يُرمز لها بالرمز  R و تتضمن كلاً مِن:

1- الأعداد الطبيعية ط: و تتضمن هذه المجموعة مِن الأعداد كافة الأعداد الصحيحة الموجبة 1 ،2 ،3… و ما إلى ذلك.

2- الأعداد الصحيحة ص: و التي تتضمن كافة الأعداد الغير كسرية سواء الموجبة أم السالبة و تتضمن كذلك الصفر.

3- الأعداد النسبية: و هي كافة الأرقام التي يُمكن كتابتها على صورة كسر بسط و مقام ، و تتضمن الكسور العشرية الدورية المنتظمة.

4- الأعداد الغير نسبية: و هي الكسور العشرية الدورية الغير منتظمة و الجذور التي ما مِن تربيع لها أو تكعيب كامل.

إقرأ أيضاً:

التوازي و التعامد في الرياضيات

بحث عن خصائص الأعداد الحقيقية

حسناً هذا بحث عن خصائص الاعداد الحقيقيه فدعونا نتعرف عليها كاملةً:

1- خاصية الإنغلاق Closure Properties

Closure Properties
Closure Properties

والمقصود هو أنه إذا ما كان أ و  ب عددان حقيقيان فإن ناتج جمعهما أو طرحهما ينتج عنه عدد حقيقي أخر و كذلك الأمر إذا ما تم ضربهما و لكن هذا الأمر لا ينطبق على عملية القسمة.

2- الخاصية التبادلية Commutative Properties

=
Commutative Properties
Commutative Properties

تنطبق هذه الخاصية على كافة عمليات جمع الأعداد الحقيقية و ضربها و المقصود بها أنه إذا ما كان أ و  ب عددان حقيقيان فإن حاصل جمع أ و  ب هو نفسه حاصل جمع ب و  أ و كذلك الأمر بالنسبة لعملية الضرب.

3- الخاصية التجميعية Associative Properties

Associative Properties
Associative Properties

تنطبق هذه الخاصية على كافة عمليات الجمع و الطرح و المقصود بها هو أنه إذا ما كان أ و  ب و  ب أعداداً حقيقية فإن (أ+ب)+ج=أ+(ب+ج).

تعرف على:

بحث عن الذوق العام doc

4- الخاصية التوزيعية Distributive Properties

Distributive Properties
Distributive Properties

والمقصود بها هو أنه مِن الممكن توزيع عملية الضرب على عمليتين جمع و طرح أي أن ج×(أ+ب)=ج×أ+ج×ب.

5- خاصية الهوية The Identity Properties

The Identity Properties
The Identity Properties

وهو العنصر المحايد لعملية الجمع و هو الصفر مما يعني أنه عند إضافة الصفر لأي قم فإنه يعطي نفس الرقم ، و فيما يخص عملية الضرب فإن العنصر المحايد لعملية الضرب هو الرقم 1 أي أنه و عند ضرب الرقم 1 في أي عدد أخر فإنه يُعطي نفس العدد.

6- خاصية المعكوس Inverse Properties

مِن الممكن تعريف المعكوس الجمعي لأي عدد حقيقي بأنه العدد الذي إذا ما تمت إضافته لهذا العدد فإن الناتج يكون صفر فمثلاً فإن المعكوس للرقم 3 هو سالب 3 فناتج جمع 3 و  سالب 3 يُعطينا صفر ، أما المعكوس الضربي في عملية الضرب فهو العدد الذي لدى ضربه في أي عدد حقيقي يُعطينها 1 و دائماً ما يُمثل مقلوب العدد المعكوس الضربي له.

إقرأ أيضاً:

بحث عن مركبات الكربونيل

بحث عن خصائص الاعداد الحقيقيه … نشأة الأعداد الحقيقية

نشأة فكرة الأعداد الحقيقية بسبب و جود الكثير مِن الأطوال التي يصعب التعبير عن قياسها بإستخدام أياً مِن الأعداد الصحيحة أو الكسرية حيث أن ناتج قياسها عبارة عن عدد غير كسري ، و مِن الجدير بالذكر أن الأعداد الحقيقية هي أعداد غير منتهية على خط الأعداد.

بحث عن خصائص الاعداد الحقيقيه … الأعداد الحقيقية في الفيزياء

في الفيزياء فإن الأعداد الحقيقية تُستخدم في التعبير عن المقاييس و هذا لسببين رئيسيين و هما:

1- لأن المفاهييم الفيزيائية مثل التسارع و السرعة اللحظية هي كلها مفاهيم ناتجة عن نظريات رياضية ، و كما هو معروف فإن الرياضيات تهتم و بشكل كبير بالأعداد الحقيقية ، كما أن هذه المفاهيم تكون أكثر أهمية و دقة إذا ما تم التعبير عنها بالأعداد الحقيقية.

2- كما أنه و في الغالب فإن نتيجة الحسابات الفيزيائية لا يُمكن التعبير عنها بأرقام كسرية.

الأعداد الحقيقية في الحاسوب

الحاسوب لا يُمكنه أن يتعامل مع كافة الأعداد الحقيقية و إنما يعمل على مجموعة جزئية فقط مِن الأعداد الحقيقية يحدها في ذلك عدد البتات اللاتي يستعملها الحاسوبفي تخزين و معالجة الأعداد الحقيقية.

تاريخ الأعداد الحقيقية

تم إستخدام الكسور الإعتيادية مِن قبل المصريين منذ حوالي ألف سنة قبل الميلاد ، كما كانت تُستخدم و بكثرة مِن قبل علماء الرياضيات الإغريق بقيادة فيثاغورس.

بنية الأرقام الحقيقية

الأرقام الحقيقية هي و بإختصار شديد عبارة عن تكملة للأعداد الجذرية حيث تؤول كل متتالية معرفة بسلسلة مِن الأعداد العشرية أو الثنائية.

القيمة المطلقة لعدد حقيقي

والمقصود هو أنه إذا ما كان الرقم أ هو أي عدد حقيقي غير معدوم فإن أكبر العددين أ و  سالب أ يُعرف بإسم القيمة المطلقة للعدد الحقيقي أ أو نظيم س و يُرمز له بالرمز |أ|  ، و إذا ما كان أ مُساوياً للصفر فإنه يُكتب |\|=\.

التقريب العشري لعدد حقيقي

مِن الممكن القول بأن أ إذا ما كان ينتمي لمجموعة الأعداد الحقيقية فإن هذا يعني أنه ثمة عدد صحيح واحد يُحقق  م≤ أ≤ م +1 ، و مِن الجدير بالذكر أن الجزء الصحيح ل أ يكتب [س]=م ، إذا فإن  [3.14]=3 و  [-3.14]= -4 و هكذا.

والأن لنجعل أ عدد حقيقي و  ن عدد طبيعي إذاً فإن س×10ن عدد حقيقي و بهذا فإنه يوجد عدد صحيح و حيد يُحقق ≤ أ×10ن<1+ ، أي أنه و مِن × 10-ن ≤ س< (1+من)×10-ن فإنه يوجد عدد سن =من ×10-ن و القيمة العشرية التقريبية للعدد أ بالنقصان بينما ندعو صن = (1+من) × 10-ن للقيمة العشرية التقريبية للعدد أ بالزيادة.

قد يهمك:

بحث عن الحياة الفطرية doc

خاتمة بحث عن خصائص الاعداد الحقيقيه

وفي نهاية بحث عن خصائص الاعداد الحقيقيه فإنه يجب الإشارة إلى أن الأعداد الحقيية هي الأساس الذي لا تتم بدونه أي عملية حسابية ، كما أن كثيراً مِن المجالات المختلفة تتوقف على إستخدام الأعداد الحقيقية مثل الهندسة و الجبر و الكيمياء و الفيزياء و ما إلى ذلك ، و لهذا فإنه يجب فهم الأعداد الحقيقية جيداً… بحث عن خصائص الاعداد الحقيقيه.